David Ellis
Lecturer in Computational Social Science, Lancaster University
CREST Outputs
Projects
Articles
Academic Publications
Do smartphone usage scales predict behavior?
Understanding how people use technology remains important, particularly when measuring the impact this might have on individuals and society. However, despite a growing body of resources that can quantify smartphone use, research within psychology and social science overwhelmingly relies on self-reported assessments. These have yet to convincingly demonstrate an ability to predict objective behavior. Here, and for the first time, we compare a variety of smartphone use and ‘addiction’ scales with objective behaviors derived from Apple's Screen Time application. While correlations between psychometric scales and objective behavior are generally poor, single estimates and measures that attempt to frame technology use as habitual rather than ‘addictive’ correlate more favorably with subsequent behavior. We conclude that existing self-report instruments are unlikely to be sensitive enough to accurately predict basic technology use related behaviors. As a result, conclusions regarding the psychological impact of technology are unreliable when relying solely on these measures to quantify typical usage.
(From the journal abstract)
Ellis, D. A., Davidson, B. I., Shaw, H., & Geyer, K. (2019). Do smartphone usage scales predict behavior? International Journal of Human-Computer Studies, 130, 86–92.
https://doi.org/10.1016/j.ijhcs.2019.05.004A simple location-tracking app for psychological research
Location data gathered from a variety of sources are particularly valuable when it comes to understanding individuals and groups. However, much of this work has relied on participants’ active engagement in regularly reporting their location. More recently, smartphones have been used to assist with this process, but although commercial smartphone applications are available, these are often expensive and are not designed with researchers in mind. To overcome these and other related issues, we have developed a freely available Android application that logs location accurately, stores the data securely, and ensures that participants can provide consent or withdraw from a study at any time. Further recommendations and R code are provided in order to assist with subsequent data analysis.
(From the journal abstract)
Geyer, K., Ellis, D. A., & Piwek, L. (2019). A simple location-tracking app for psychological research. Behavior Research Methods, 51(6), 2840–2846.
https://doi.org/10.3758/s13428-018-1164-yThe Rise of Consumer Health Wearables: Promises and Barriers
Will consumer wearable technology ever be adopted or accepted by the medical community? Patients and practitioners regularly use digital technology (e.g., thermometers and glucose monitors) to identify and discuss symptoms. In addition, a third of general practitioners in the United Kingdom report that patients arrive with suggestions for treatment based on online search results. However, consumer health wearables are predicted to become the next “Dr Google.” One in six (15%) consumers in the United States currently uses wearable technology, including smartwatches or fitness bands. While 19 million fitness devices are likely to be sold this year, that number is predicted to grow to 110 million in 2018. As the line between consumer health wearables and medical devices begins to blur, it is now possible for a single wearable device to monitor a range of medical risk factors. Potentially, these devices could give patients direct access to personal analytics that can contribute to their health, facilitate preventive care, and aid in the management of ongoing illness. However, how this new wearable technology might best serve medicine remains unclear.
(From the journal abstract)
Piwek, L., Ellis, D. A., Andrews, S., & Joinson, A. (2016). The Rise of Consumer Health Wearables: Promises and Barriers. PLOS Medicine, 13(2), e1001953.
https://doi.org/10.1371/journal.pmed.1001953Behavioral consistency in the digital age
Efforts to infer personality from digital footprints have focused on behavioral stability at the trait level without considering situational dependency. We repeat Shoda, Mischel, and Wright’s (1994) classic study of intraindividual consistency with data on 28,692 days of smartphone usage by 780 people. Using per app measures of ‘pickup’ frequency and usage duration, we found that profiles of daily smartphone usage were significantly more consistent when taken from the same user than from different users (d > 1.46). Random forest models trained on 6 days of behavior identified each of the 780 users in test data with 35.8% / 38.5% (pickup / duration) accuracy. This increased to 73.5% / 75.3% when success was taken as the user appearing in the top 10 predictions (i.e., top 1%). Thus, situation-dependent stability in behavior is present in our digital lives and its uniqueness provides both opportunities and risks to privacy.
(From the journal abstract)
Shaw, H., Taylor, P., Ellis, D. A., & Conchie, S. (2021). Behavioral consistency in the digital age [Preprint]. PsyArXiv.
https://doi.org/10.31234/osf.io/r5wtn
Projects
Articles
Academic Publications
Do smartphone usage scales predict behavior?
Understanding how people use technology remains important, particularly when measuring the impact this might have on individuals and society. However, despite a growing body of resources that can quantify smartphone use, research within psychology and social science overwhelmingly relies on self-reported assessments. These have yet to convincingly demonstrate an ability to predict objective behavior. Here, and for the first time, we compare a variety of smartphone use and ‘addiction’ scales with objective behaviors derived from Apple's Screen Time application. While correlations between psychometric scales and objective behavior are generally poor, single estimates and measures that attempt to frame technology use as habitual rather than ‘addictive’ correlate more favorably with subsequent behavior. We conclude that existing self-report instruments are unlikely to be sensitive enough to accurately predict basic technology use related behaviors. As a result, conclusions regarding the psychological impact of technology are unreliable when relying solely on these measures to quantify typical usage.
(From the journal abstract)
Ellis, D. A., Davidson, B. I., Shaw, H., & Geyer, K. (2019). Do smartphone usage scales predict behavior? International Journal of Human-Computer Studies, 130, 86–92.
A simple location-tracking app for psychological research
Location data gathered from a variety of sources are particularly valuable when it comes to understanding individuals and groups. However, much of this work has relied on participants’ active engagement in regularly reporting their location. More recently, smartphones have been used to assist with this process, but although commercial smartphone applications are available, these are often expensive and are not designed with researchers in mind. To overcome these and other related issues, we have developed a freely available Android application that logs location accurately, stores the data securely, and ensures that participants can provide consent or withdraw from a study at any time. Further recommendations and R code are provided in order to assist with subsequent data analysis.
(From the journal abstract)
Geyer, K., Ellis, D. A., & Piwek, L. (2019). A simple location-tracking app for psychological research. Behavior Research Methods, 51(6), 2840–2846.
The Rise of Consumer Health Wearables: Promises and Barriers
Will consumer wearable technology ever be adopted or accepted by the medical community? Patients and practitioners regularly use digital technology (e.g., thermometers and glucose monitors) to identify and discuss symptoms. In addition, a third of general practitioners in the United Kingdom report that patients arrive with suggestions for treatment based on online search results. However, consumer health wearables are predicted to become the next “Dr Google.” One in six (15%) consumers in the United States currently uses wearable technology, including smartwatches or fitness bands. While 19 million fitness devices are likely to be sold this year, that number is predicted to grow to 110 million in 2018. As the line between consumer health wearables and medical devices begins to blur, it is now possible for a single wearable device to monitor a range of medical risk factors. Potentially, these devices could give patients direct access to personal analytics that can contribute to their health, facilitate preventive care, and aid in the management of ongoing illness. However, how this new wearable technology might best serve medicine remains unclear.
(From the journal abstract)
Piwek, L., Ellis, D. A., Andrews, S., & Joinson, A. (2016). The Rise of Consumer Health Wearables: Promises and Barriers. PLOS Medicine, 13(2), e1001953.
Behavioral consistency in the digital age
Efforts to infer personality from digital footprints have focused on behavioral stability at the trait level without considering situational dependency. We repeat Shoda, Mischel, and Wright’s (1994) classic study of intraindividual consistency with data on 28,692 days of smartphone usage by 780 people. Using per app measures of ‘pickup’ frequency and usage duration, we found that profiles of daily smartphone usage were significantly more consistent when taken from the same user than from different users (d > 1.46). Random forest models trained on 6 days of behavior identified each of the 780 users in test data with 35.8% / 38.5% (pickup / duration) accuracy. This increased to 73.5% / 75.3% when success was taken as the user appearing in the top 10 predictions (i.e., top 1%). Thus, situation-dependent stability in behavior is present in our digital lives and its uniqueness provides both opportunities and risks to privacy.
(From the journal abstract)
Shaw, H., Taylor, P., Ellis, D. A., & Conchie, S. (2021). Behavioral consistency in the digital age [Preprint]. PsyArXiv.